
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 14, 71-81 (1992) 

ITERATIVE METHODS FOR STABILIZED MIXED 
VELOCITY-PRESSURE FINITE ELEMENTS 

JOHN ATANGA AND DAVID SILVESTER 
Department of Mathematics. University of Manchester Institute of Science and Technology, 

PO Box 88. Manchester M60 IQD. U.K. 

SUMMARY 
This paper is concerned with iterative techniques for the solution of the linear system of equations arising 
from a finite element approximation of an elliptic partial differential equation by a mixed method. Three 
types of iterative algorithms are investigated. Applications to the Stokes equations are discussed and the 
results of numerical experiments given. 
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1. INTRODUCTION 

Direct solution methods for large sparse systems, especially those arising from finite element 
discretizations of three-dimensional problems, can exhibit high computational costs. The devel- 
opment of iterative strategies to reduce these costs has been an active research area for many 
years (see e.g. References 1-3) and the area remains a vigorous branch of numerical analysis. 

The discretized system corresponding to a conventional mixed finite element formulation can 
be written as the partitioned matrix equation (formally described in Reference 4) 

Here we will restrict our attention to the Stokes equations (see e.g. Reference 5), in which case A is 
a symmetric positive definite N x N matrix, B is M x N matrix corresponding to the coupling 
term and is of full rank if a stable mixed method is used: 0 is the M x M zero matrix, the vectors 
f and g result from inhomogeneous data, and u and p denote vectors of length N and M 
corresponding to nodal velocity and pressure values respectively. Of crucial interest here is the 
zero block on the diagonal, which is a source of indefiniteness and which makes iterative solution 
of the system (1) difficult. 

Low-order conforming mixed approximations of incompressible flows, such as those obtained 
with the bilinear velocity-constant pressure element ( Q1 --Po), are well known to be unstable in 
pressure while providing reasonable results for the velocity. On the other hand, computer 
implementation aspects curtail the use of higher-order approximations. These observations have 
led to the introduction of stable low-order mixed finite element methods. 
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A recent development of mixed finite element discretizations of the Stokes (and Navier-Stokes) 
equations with low-order methods has been the use of regularization, which enhances the 
possibility of using iterative solution methods for these  problem^.^-^ Here we will consider a 
symmetric regularization of the discrete Stokes problemg 

where C is a symmetric positive semidefinite matrix such that the 'stabilization condition' 

BTp=O pTCp#O (3) 
is satisfied and /3 > 0 is the stabilization parameter. 

the systems (1) and (2). In particular, constructing the congruence transformation 
We can justify the use of the term 'regularization' by considering the eigenvalue distribution of 

(A B -/3C BT)=(; :)(*-I 0 -BA-'BT-/3C O > ( A  0 "> I 

and applying Sylvester's law of inertia, it is clear that the coefficient matrix in (2) is always non- 
singular, whereas (1) will have zero eigenvalues whenever the matrix B is rank-deficient (giving 
rise to instability associated with spurious pressure modes). In simple terms, both (1) and (2) have 
N strictly positive eigenvalues, but (1) can have zero eigenvalues which are transformed into 
strictly negative eigenvalues by the stabilization condition (3). 

Our objective in this work is to present a comparative survey of the three general strategies for 
solving the stabilized system (2). In Section 2 we derive an iterative scheme for the so-called 
primal problem (i.e. for the velocity field). Our technique is a variant of the well-known Uzawa 
method (see e.g. Reference 10) applied to (2). Section 3 discusses a standard reformulation of (2) as 
a symmetric positive definite system for the dual variable (i.e. the pressure field). The basic 
conjugate gradient method is then applied to this reformulated system, as proposed by Verfiirth" 
and developed by Bramble and Pasciak" and also Bank et ~ 1 . ' ~  We show that both the primal 
and dual strategies implicitly involve a decoupling of the Stokes system into the component 
equations of momentum conservation and incompressibility. This decoupling implies that the 
resulting iterative schemes have an embedded inner-outer iteration structure. In Section 4 we 
consider applying a preconditioned conjugate gradient method directly to the stabilized system 
(2), i.e. we investigate the feasibility of using a much simpler (single-level) iteration for both primal 
and dual variables simultaneously. The numerical performance of the three techniques is then 
assessed on a test problem in Section 5 and some conclusions are drawn. Finally, in Section 6 the 
impact of this work within the more general framework of Navier-Stokes flow solvers is assessed. 

2. AN ITERATED PENALTY ALGORITHM 

A discrete penalty formulation corresponding to the system (2) can be written in matrix form as 

Au + BTp = f, 

Bu - (EM + /3C)p = g, 

(4) 

(5 )  

where M is the pressure mass matrix and E is a small penalty parameter. The matrix system (4), (5 )  
is a perturbation of (2); thus the solution of (4), (5 )  corresponds to that of a neighbouring problem 
and not to that of (2). A simple way of preserving consistency is to perform the iteration 
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(6) 

(7) 

Aui+ 1 + BTpif 1 =f, 

Bu'+' -(EM + PC)pifl = -  EM^'+ g, 

for i = l ,  2,. . . , with po=O. 
Here, since M is symmetric positive definite and C is symmetric positive semidefinite, the 

matrix EM + PC is symmetric positive definite (hence non-singular), so pi+' can be eliminated 
from the system: 

with 

where D=M+(P/&)C and (l/E)BTD-'B is the 'stabilized penalty matrix'. We now prove the 
convergence of the iteration scheme defined by (6), (7). 

Theorem I 

For all p0e RM and E > O  the sequence (u'+', pi+') defined by (6), (7) converges to the solution 
of (2). 

Pro05 Suppose (u, p) is a solution of (2); then 

Au + BTp = f, (10) 

Bu-PCp-EMp=g-EMp. (11) 
We introduce Ui=ui-u and pi=MIIZ(pi-p). Subtracting (10) from (6) and (11) from (7), we 
obtain 

(12) 

(13) 

(14) 

A$+l + g T ~ - l / Z p ' + l  =o, 
B"i+ 1 - ~ C M -  1/2pi+ 1 - & ~ 1 / 2  -i+ 1 = - E ~ l / 2 i j i .  P 

Substituting for u i+ '  from (12) into (13) gives 
+DCM-'/2p'+l _tEM1/Zp'+1 =&M1/2-i P ,  BA - 1 BTM- 1/2 -i + 1 

leading to the iteration for the pressure error 

(15) 

Now, because of the stabilization condition (3), the matrix BA-'BT+PC is positive definite and 
symmetric, hence the matrix M-'I2(BA- 1BT+PC)M-112 is positive definite and symmetric and 
so must have strictly positive eigenvalues. Writing the iteration in the form 

- M- 1/2(BA- 1 BT + pc)M- 1/2 + 1 p'+ 1 = p'. 
(f ) 

(16) $+ 1 = Kp', 

it is clear that the convergence behaviour of (15) is determined by the spectral radius of K, which is 
given by 

1 

P(K)=(l,&);* + 1 ' (17) 
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where A* is the minimum eigenvalue of the matrix M- "'(BA- BT + /IC)M- I/'. Hence, since 
E>O, (16) will always converge, i.e. p + O  as i+m. Since M'" is non-singular, this implies that 
p'+p. Further, from (12), p f ' = O  implies i i i + ' = O ,  so we also have that ui+u as i+m. 0 

Concerning the sensitivity of the scheme with respect to the penalty parameter E, we have that 
for E sufficiently small the 'contraction factor' p(K) is of the form 

so that E behaves like an acceleration parameter: the smaller the value of E, the faster is the 
convergence of the algorithm. The weak point of the algorithm is obviously the fact that an 
'inner system' (8) has to be solved at each iteration. Unfortunately, the coefficient matrix 
A + ( l/E)BTD- B becomes progressively more ill-conditioned as E decreases, making iterative 
solution of the 'inner system' progressively more difficult. See Reference 5 for a fuller discussion of 
this issue. 

Concerning the sensitivity of the scheme with respect to the stabilization parameter /I for a fixed 
E, our experiments reported later show that if /I is in the range 1- 10' there is no significant change 
in the behaviour of the iteration. However, as /I+O the number of iterations required increases 
(because A*+O as fi+O). 

Our implementation of the iterated penalty method is as defined in Algorithm One. Concen- 
trating on the convergence of the inner iteration (i.e. the calculation of ui+ I), the condition 
number of the coefficient matrix A+(l/&)BTD-'B can be shown to be O ( ~ / E )  and so the inner 
system becomes progressively ill-conditioned as the 'acceleration parameter' is reduced. However, 
the matrix is always symmetric positive definite, so for a moderate choice say) the 
conjugate gradient method is a realistic choice for the inner solution procedure. 

Clearly, the convergence of the outer iteration depends on the convergence of the inner 
iteration at each step. The two obvious strategies are having a fixed tolerance for the inner 
iteration or performing a fixed number of inner iterations. We will adopt the first approach, 

s e t  po = O 

so lve  

( A  + iB'D-'B)u'  = f - LB'D-Ig 
P 1 - - - ?  1D-'(Bu1 - g )  

for z = 1,Z.. . . 

s o l v e  

( A  + $B*D-'B)u'+' = f + fB'D-'g - B'D-'Mp' 

update the  pressure 

= D-1 (Mp'  + $(BU'+' - 9 ) )  

update the  res idual  

r l + l  = g + 4Cp'+' - BU'+' 

endf or 

Alnorithm One 
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converging both levels of iteration to the same accuracy using the current outer iterate as the 
initial guess for the inner iteration at each stage. 

In the next section we discuss a method which does not involve a penalty parameter. 

3. A TWO-LEVEL CONJUGATE GRADIENT ALGORITHM 

Applying block Gaussian elimination to (2) and multiplying the last block row by - 1, we obtain 

A-'BT A-'  f (i PC+BA-'BT ) (:)=(BA-lf-g)* 

The stabilized pressure equation can then be written as 

(PC + BA- BT)p = BA- f - g 

AII = f - BTp. 

(19) 

(20) 

The pressure matrix BA-lBT is symmetric and for quasi-uniform grids and using a stable 
mixed method has a condition number which is independent of the grid parameter h." In our 
case the stabilized pressure matrix PC + BA- 'BT is also symmetric and furthermore the stability 
condition (3) ensures that it is positive definite. Numerical experiments show that it is also 
'perfectly' conditioned in the sense that for a given f i  the condition number of the pressure matrix 
tends to a constant as the grid is uniformly refined. Consequently, we can solve (19) efficiently 
using the basic conjugate gradient method. This leads to Algorithm Two. 

Considering the convergence of Algorithm Two, the computation of the step length is crucial. 
This is associated with the inner linear system 

and the velocity is recovered via 

AS: = BT s;, (21) 

(22) 

and clearly the algorithm will break down only if 

(st, AS:) + P ( s ~ ,  C S ~ )  = 0, 
i.e. s: = 0 and (s;, Csb) = 0. However, the velocity search direction 4 = 0 only if BTsb=O and by the 
stabilization condition (3) 

BTs;=O +- (s;, Csb)#O, 

so the algorithm cannot break down prematurely. Further, since the coefficient matrix is 
symmetric, the algorithm must terminate in a finite number of iterations and hence always 
converges (assuming exact arithmetic). 

For the inner system (21) the matrix A is symmetric and positive definite so the conjugate 
gradient method can be applied, thus again defining a two-level iteration. As with Algorithm One, 
our strategy will be to converge the inner iteratton to the same accuracy required for the outer 
iteration. 

As mentioned earlier, the stabilized pressure matrix PC + BA- BT is extremely well-condi- 
tioned so that in practice the number of outer iterations becomes independent of h as the grid is 
successively refined. One immediate consequence of this is that for an arbitrary initial grid, if a 
uniform refinement strategy is adopted, then preconditioning the system (19) will only be of 
limited benefit (the preconditioned system will have a condition number independent of h, 
possibly with a smaller constant). Nonetheless, Cahouet and ChabardI4 advocate explicitly 
constructing the matrix B&-'BT, where A is an approximation to A, in order to precondition 
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set po = O 

AU' = f 
r p o  = Buo - g 

i = O  

1 o o p : u n t i l  r e s i d u a l  i s  s u f f i c i e n t l y  small 

i = i + 1  

i f  i = l  

spl  = TPO 

e l s e  

c a l c u l a t e  t h e  new pressure  search d i r e c t i o n  

spa = rp'-l + ssp'-'  

endif 

so lve  f o r  t h e  new v e l o c i t y  search d i r e c t i o n  

As,' = Bisp'  

c a l c u l a t e  t h e  s t e p  length  

update t h e  p r e s s u r e ,  t h e  ve loc i ty  and t h e  r e s i d u a l  

p' = p1-1 + asp* 

u' = u1-1 - as,' 

rp'  = ry'-' - (Y( BsUa - /3Cs,') 

endloop 

Algorithm Two 

(19) in the case of a stable mixed approximation, and Vincent and Boyer'' have extended this idea 
to a stabilized mixed approximation. Whilst the value of this is debatable in the case of regular 
grids, especially if the construction of the preconditioner is expensive, when using a non-quasi- 
uniform sequence of grids the use of a preconditioner of the form discussed in Reference 14 or 15 
appears to be vital if Algorithm Two is to perform reasonably. 

Regarding the sensitivity of Algorithm Two to the magnitude of the parameter #I in the 
stabilized pressure equation (19), we show in Section 5 that in practice the rate of convergence is 
fairly insensitive to the magnitude of #I (at least in the range 10-2-102). This gives the method an 
inherent robustness, since there are no parameters which require careful tuning, and is in contrast 
to Algorithm One where the penalty parameter needs to be chosen carefully. 

Our only doubt concerning the optimality of the dual-variable iteration is that the complexity 
associated with having two-level iteration scheme might be unnecessary. This is explored further 
in the next section. 
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4. A ONE-LEVEL PRECONDITIONED CONJUGATE GRADIENT ALGORITHM 

An interesting alternative to the use of a two-level iteration scheme (which is necessary for the 
primal or dual variable formulation) is to apply a (preconditioned) iterative scheme directly to the 
stabilized system (2) with coefficient matrix 

.=(A B - j C  BT ). 
Assuming that K is preconditioned by a symmetric positive definite matrix M, two possible 
schemes are the conjugate residual algorithm and the conjugate gradient algorithm. With such a 
preconditioner M the preconditioned system M- '/'KM-'/' is symmetric so the conjugate 
residual algorithm (see e.g. the robust ORTHODIR implementation of Jea and Young16 (p. 403)) 
will converge, giving a monotonic reduction in residuals in the M-' norm. Numerical ex- 
periments with such preconditioned conjugate residual methods show that they invariably 
converge but that the speed of convergence depends crucially on the stabilization (in particular on 
the magnitude of the parameter j). This suggests the possibility of 'tuning' the choice of j so as to 
optimize the rate of convergence. A theoretical analysis of the convergence of the conjugate 
residual algorithm in the case of the diagonal preconditioner 

M = (  diag (A) 
0 jdiag(C) 0 Mc 

is presented in Reference 17. 
Here we would like to consider applying the standard preconditioned conjugate gradient 

algorithm as defined by Golub and Van Loan'* (p. 374) to (2) with coefficient matrix (23) and 
preconditioning matrix (24). This leads to Algorithm Three. However, in contrast to Algorithm 
Two, the stabilization condition (3) does not provide a guarantee that the step length in 
Algorithm Three is bounded, so in theory the conjugate gradient method may fail to converge. 
Our results in the next section are testimony to the fact that the method does not break down in 
practice. In fact the method displays very similar convergence characteristics to the conjugate 
residual algorithm, although of course the nice property of the monotonic reduction in residuals 
is lost. 

Referring to other possible preconditioning schemes, the presence of the negative entries on the 
diagonal of K means that some preconditioners (for example ICCG) are not directly applicable. 
Some results using a conjugate gradient algorithm with an indefinite diagonal preconditioner are 
presented in Reference 9. Another feasible choice would be to use an element-by-element 
preconditioning method." More sophisticated preconditioners lead back to the dual formulation 
(19); see References 12 and 13 for details in the stable mixed approximation case. We emphasize 
here that the major advantage of this direct approach is the fact that there is only one level of 
iteration and therefore implementation is particularly simple, especially with parallel processing 
in mind. This advantage will be lost if the preconditioner is too sophisticated. 

5. NUMERICAL RESULTS 

In this section we compare the numerical performance of the three algorithms described in the 
previous sections for solving the classical two-dimensional lid-driven cavity problem. Only half 
the solution domain was modelled, by exploiting symmetry, and the discretization was by 
uniformly refined grids of Q1-Po square elements using the so-called local stabilization procedure 
of Silvester and K e ~ h k a r . ~  See Reference 9 for a full description of this problem. The com- 
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set xuo = O 

set rPo = O 
rU0 = f 

rpo = g 

i = O  

1oop:unt i l  res idual  is s u f f i c i e n t l y  small 

2,' = MA-Ir,,' 

zp' = Mc-lr, , '  

z = n + l  

i f  z = 1  

pu' = z,o 
p,' = zpo 

e l s e  

update the search d i r e c t i o n  

pu' = 2,,1--1 + 6p,'-' 
Pp' - - :p'--l + 6pp'-' 

endif 

w,' = Ap,' + B t p p '  

wp' = Bp,'  - ,9C'p,' 

update the  s t e p  length 

update the so lut ion and the residual  

xu' = xu'-' f ap, '  

xp' = Ip'-' + app'  

r,,' = r,,l-1 - nu1,' 

rp' = rP'-l - aq,' 
endloop 

Alnorithrn Three 

putations were done using Pro-MATLAB on an Ardent Titan computer. In all cases the tolerance 
for convergence was a reduction of 

An important feature of the local stabilization approach is the fact that solution accuracy is 
preserved in the limit of an arbitrarily large stabilization parameter, This is in contrast to the so- 
called global stabilization methods,6-8 where the accuracy deteriorates as p + ~ .  As a conse- 
quence of this, using the local stabilization approach it is feasible to tune the stabilization 

in the L,-norm of the residual. 
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parameter to achieve the best rate of convergence for each of the three algorithms above. Thus in 
Tables 1-111 we present iteration counts for three values of the stabilization parameter in the 
range 10-2-102 in the knowledge that the numerical solutions are of comparable accuracy in 
each case. 

For the solution of the inner systems in Algorithms One and Two we used the basic one-step 
Jacobi preconditioned conjugate gradient as described by Adams.” The current estimate of the 
solution at each outer iteration was used as the initial guess for the inner iteration; consequently 
the number of inner iterations required to reach the tolerance steadily decreased as the outer 
iteration converged. In Tables I and I1 both the number of outer iterations and the total number 
of inner iterations performed in each case are presented. 

Using Algorithm One with local stabilization and a macroelement numbering of the pressure 
degrees of freedom, the matrix D turns out to be block diagonal. The matrix D -  ’ can therefore be 
stored as a single inverted block, thus reducing the storage required and simplifying the 
calculation of the ‘stabilized penalty matrix’ (l/&)BTD-’B. 

Considering the results in Table I, it is clear that there is no great change in the number of inner 
iterations when increasing the stabilization parameter from j3= 1 to j3= lo2. For smaller values of 
the stabilization parameter (e.g. j3= lo-*) more iterations are required, and in the limit of j3+0 
convergence becomes arbitrarily slow. 

The projected Uzawa method of Fortin and Boivin2’ is very similar to the iterated penalty 
method above. The principle difference is that in Reference 21 the coefficient matrix of the inner 
iteration is essentially A + (l/&)BTB. Comparing our iterated penalty method results with those 
presented by Fortin and Boivin,” the superiority of our approach is obvious. In Reference 21 
there is a ‘residual instability’ which seems to preclude convergence for &< lo-’. Our method 
allows us to choose a much smaller value for E without running into difficulty. 

Looking at Table 11, an important point to note is that for all values of the number of outer 
iterations is tending to a constant as the grid is refined, indicating that the condition of the 

Table I. Number of iterations required by Algorithm One ( E  = 

/? = 10-2 p = 1  p = 102 

Grid Outer Inner Outer Inner Outer Inner 

2 x 4  5 39 4 30 3 20 
4 x 8  6 244 4 156 4 126 
8 x  16 10 746 6 48 1 6 459 

16 x 32 21 1967 9 1165 9 1197 
~~~~ ~ ~ ~ 

Table 11. Number of iterations required by Algorithm Two 

p = 10-2 p = 1  p = 102 

Grid Outer Inner Outer Inner Outer Inner 

2 x 4  8 32 8 32 8 32 
4 x 8  14 173 15 187 19 240 
8x16  14 336 18 424 22 540 

16 x 32 14 575 19 750 25 1070 



80 J. ATANGA AND D. SILVESTER 

Table 111. Number of iterations required by Algorithm Three 

Grid p = 10-2 p = 1  p = 102 

2 x 4  
4 x 8  
8 x 1 6  

16 x 32 

15 15 14 
74 63 66 

209 177 162 
529 426 322 

stabilized pressure matrix is indeed independent of the mesh parameter h. Clearly, the number of 
outer iterations tends to a different constant for different values of j?, with more iterations 
required as j? gets larger. This reflects the fact that whilst the stabilized pressure matrix has a 
condition number independent of h for all values of j?, the ‘critical’ condition number varies 
with j?. Numerical experiments show that a value of j?=O(lO-’) is the best choice in this case. 

It is immediately obvious from Table I11 that for Algorithm Three an increase in j? from lo-’ 
reduces the number of iterations required. The value of j?=O(102) turns out to be optimal in this 
case, because for larger values of j?, i.e. j? = O( lok) with k > 2, the numer of iterations can be seen to 
increase monotonically with k. 

In conclusion, comparing the total iteration counts in the tables above, it is clear that both the 
two-level and one-level conjugate gradient algorithms are generally superior to the iterated 
penalty method. The two-level scheme is probably best overall in view of the inherent robustness 
of the iteration. However, if the stabilization parameter is appropriately chosen (i.e. O( lo’)), then 
the one-level scheme is potentially the most efficient of the three methods considered and appears 
to be perfectly robust in practice. 

6. IMPACT ON NAVIER-STOKES SOLVERS 

From the outset it is stressed that the algorithms described herein are only directly applicable 
when the matrix A in (1) is symmetric and positive definite. A conventional discretization of the 
steady state Navier-Stokes equations leads to a non-linear algebraic system of the form (1) where 
the coefficients of A depend on the velocity field u. A standard non-linear iterative solver (e.g. the 
Newton-Raphson scheme) then leads to a linearized system of the form (l), except that A is non- 
symmetric (although it may still be positive definite). Whilst it is straightforward to extend all 
three algorithms described herein to the case of an unsymmetric matrix A, it is not an approach 
that we would advocate. 

When solving a time-dependent Navier-Stokes problem, there are several ways of constructing 
a solution process so that one or more generalized Stokes systems (each with a symmetric A) must 
be solved at each time step. One of the most efficient is the ‘transport diffusion algorithm’ which 
is described in Reference 22 and has been proven to be very effective in the case of flow at 
high Reynolds numbers. Other solution algorithms for the time-dependent and steady state 
Navier-Stokes equations are built upon the fact that efficient Stokes solvers are available; for 
example, the least-squares methods described in Reference 23 (Chap. VII). Working within such a 
‘least-squares framework’, the efficiency of the underlying Stokes solver is of crucial importance. 
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